Worldwide, there are plants known as psychoactive plants that naturally contain psychedelic active components. They have a high concentration of neuroprotective substances that can interact with the nervous system to produce psychedelic effects. Despite these plants' hazardous potential, recreational use of them is on the rise because of their psychoactive properties. Early neuroscience studies relied heavily on psychoactive plants and plant natural products (NPs), and both recreational and hazardous NPs have contributed significantly to the understanding of almost all neurotransmitter systems. Worldwide, there are many plants that contain psychoactive properties, and people have been using them for ages. Psychoactive plant compounds may significantly alter how people perceive the world.
1. Biointerphases. 2013 Dec;8(1):1. doi: 10.1186/1559-4106-8-1. Epub 2013 Jan 17. Fluorescence modulation sensing of positively and negatively charged proteins on lipid bilayers. Robison AD(1), Huang D, Jung H, Cremer PS. Author information: (1)Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA, arobison@mail.chem.tamu.edu. BACKGROUND: Detecting ligand-receptor binding on cell membrane surfaces is required to understand their function and behavior. Detection platforms can also provide an avenue for the development of medical devices and sensor biotechnology. The use of fluorescence techniques for such purposes is highly desirable as they provide high sensitivity. Herein, we describe a technique that utilizes the sensitivity of fluorescence without directly tagging the analyte of interest to monitor ligand-receptor interactions on supported lipid bilayers. The fluorescence signal is modulated according to the charge state of the target analyte. The binding event elicits protonation or deprotonation of pH-responsive reporter dyes embedded in the lipid bilayer. METHODS: Supported lipid membranes containing ortho-conjugated rhodamine B-POPE (1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine), which fluoresces in its protonated but not in its deprotonated form, were utilized as sensor platforms for biotin-avidin and biotin-streptavidin binding events. The membranes contained 5 mol% biotin-PE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (sodium salt) as a capture ligand. Supported lipid bilayers were formed in the channels of microfluidic devices and the fluorescence intensity of the dye was monitored as protein was introduced. RESULTS: The binding of avidin, which is positively charged at pH 7.2, made the bilayer surface charge more positive, which in turn deprotonated the ortho-rhodamine B dye, reducing its fluorescence. The binding of streptavidin, which is negatively charged at pH 7.2, had the opposite effect. Reducing the ionic strength of the analyte solution by removing 150 mM NaCl from the 10 mM phosphate buffered saline (PBS) solution raised the apparent pKa of the ortho-rhodamine B titration point by about 1 pH unit. This could be exploited in conjunction with bulk solution pH changes to turn the rhodamine B-POPE dye into a sensor for streptavidin involving a decrease, rather than an increase, in the fluorescence response, at pH values below streptavidin's pI value. CONCLUSIONS: This study demonstrates the ability to monitor ligand-receptor interactions on supported lipid bilayers through the protonation or deprotonation of reporter dyes for both negatively and positively charged analytes over a range of pH and ionic strength conditions. Specifically, the sensitivity and pH-operating range of this technique can be optimized by modulating the sensing conditions which are employed. DOI: 10.1186/1559-4106-8-1 PMID: 24706114 [Indexed for MEDLINE] 2. Langmuir. 2013 Dec 3;29(48):15022-31. doi: 10.1021/la4036453. Epub 2013 Nov 21. Lipid compositions modulate fluidity and stability of bilayers: characterization by surface pressure and sum frequency generation spectroscopy. Liu W(1), Wang Z, Fu L, Leblanc RM, Yan EC. Author information: (1)Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States. Cell membranes are crucial to many biological processes. Because of their complexity, however, lipid bilayers are often used as model systems. Lipid structures influence the physical properties of bilayers, but their interplay, especially in multiple-component lipid bilayers, has not been fully explored. Here, we used the Langmuir-Blodgett method to make mono- and bilayers of 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), and 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-L-serine (POPS) as well as their 1:1 binary mixtures. We studied the fluidity, stability, and rigidity of these structures using sum frequency generation (SFG) spectroscopy combined with analyses of surface pressure-area isotherms, compression modulus, and stability. Our results show that single-component bilayers, both saturated and unsaturated, may not be ideal membrane mimics because of their low fluidity and/or stability. However, the binary saturated and unsaturated DPPG/POPG and DPPG/POPS systems show not only high stability and fluidity but also high resistance to changes in surface pressure, especially in the range of 25-35 mN/m, the range typical of cell membranes. Because the ratio of saturated to unsaturated lipids is highly regulated in cells, our results underline the possibility of modulating biological properties using lipid compositions. Also, our use of flat optical windows as solid substrates in SFG experiments should make the SFG method more compatible with other techniques, enabling more comprehensive future surface characterizations of bilayers. DOI: 10.1021/la4036453 PMID: 24245525 [Indexed for MEDLINE] 3. Biochim Biophys Acta. 2013 Sep;1828(9):2204-14. doi: 10.1016/j.bbamem.2013.05.020. Epub 2013 Jun 7. Phase diagram of a 4-component lipid mixture: DSPC/DOPC/POPC/chol. Konyakhina TM(1), Wu J, Mastroianni JD, Heberle FA, Feigenson GW. Author information: (1)Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA. We report the first 4-component phase diagram for the lipid bilayer mixture, DSPC/DOPC/POPC/chol (distearoylphosphatidylcholine/dioleoylphosphatidylcholine/1-palmitoyl, 2-oleoylphosphatidylcholine/cholesterol). This phase diagram, which has macroscopic Ld+Lo phase domains, clearly shows that all phase boundaries determined for the 3-component mixture containing DOPC transition smoothly into the boundaries for the 3-component mixture containing POPC, which has nanoscopic phase domains of Ld+Lo. Our studies start from two published ternary phase diagrams, and show how these can be combined into a quaternary phase diagram by study of a few hundred samples of intermediate compositions. Copyright © 2013 Elsevier B.V. All rights reserved. DOI: 10.1016/j.bbamem.2013.05.020 PMCID: PMC3738200 PMID: 23747294 [Indexed for MEDLINE] 4. Biophys Chem. 2010 Mar;147(1-2):20-7. doi: 10.1016/j.bpc.2009.12.005. Epub 2009 Dec 24. Properties of phosphatidylcholine in the presence of its monofluorinated analogue. Smith EA(1), van Gorkum CM, Dea PK. Author information: (1)Department of Chemistry, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA. In aqueous solution, the monofluorinated phospholipid 1-palmitoyl-2-[16-fluoropalmitoyl]sn-glycero-3-phosphocholine (F-DPPC) interdigitates without the use of inducing agents. To understand the thermal and physical properties of this unique lipid, F-DPPC was combined with the non-fluorinated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC). Differential scanning calorimetry (DSC) was used to determine the miscibility and thermotropic phase behavior of these binary lipid mixtures. In addition, the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) and a DPH-labeled analogue of DPPC, 2-(3-(diphenylhexatrienyl) propanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (beta-DPH HPC, aka DPH-PC or DPHpPC), were used to detect interdigitation. In F-DPPC, the fluorescence intensity of both probes decreased a similar amount and to a degree that is consistent with an interdigitated system. We also determined that there are two separate effects of increasing the ratio of F-DPPC in the DPPC/F-DPPC system. With low amounts of F-DPPC, there is little evidence that the system is heavily interdigitated. Instead, we hypothesize that the introduction of F-DPPC provides nucleation sites that alter the kinetics, reversibility, and temperature of the main transition (T(m)). At higher mol% of F-DPPC, we propose that interdigitated F-DPPC-rich domains form to create a phase-segregated system. While DPPC/F-DPPC was highly miscible, the DAPC/F-DPPC system was significantly less miscible. Additionally, we observed that DAPC/F-DPPC samples have reduced solubility in water, which affected the acquisition of fluorescence data. However, our DSC results indicate the existence of DAPC-rich and F-DPPC-rich components. Furthermore, this data support that the mixing was disruptive to lipid packing and that the presence of DAPC hinders the interdigitation of F-DPPC. Copyright 2009 Elsevier B.V. All rights reserved. DOI: 10.1016/j.bpc.2009.12.005 PMID: 20064684 [Indexed for MEDLINE] 5. J Fluoresc. 2008 Mar;18(2):555-62. doi: 10.1007/s10895-007-0299-5. Epub 2007 Dec 23. Characterization of monoolein-based lipoplexes using fluorescence spectroscopy. Neves Silva JP(1), Coutinho PJ, Real Oliveira ME. Author information: (1)Physics Department, University of Minho, Campus of Gualtar, Braga, Portugal. Lipoplexes are commonly used as delivery systems in vitro and in vivo, the role of a neutral lipid as helper being of extreme importance in these systems. Cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB) with monoolein (MO) as a helper, at different molar ratios (1:2; 1:1 and 1:0.5) were prepared, and subsequently titrated to DNA. The structural and physicochemical properties of the lipid/DNA complexes were assessed by ethidium bromide (EtBr) exclusion, 90 degrees static light scattering (90 degrees SLS) assays and fluorescence resonance energy transfer (FRET). In EtBr exclusion assays, the steady-state fluorescence spectra of EtBr were decomposed into the sum of two lognormal emissions, emanating from two different environments--H(2)O and DNA, and the effect of charge ratio (+/-) was observed. 90 degrees SLS assays gave an important contribution, detecting size variations in systems with different MO fractions on the lipoplexes. In FRET assays, 2-(3-(diphenylhexatrienyl)propanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (DPH-HPC) was used as donor and EtBr as acceptor. The DNA component previously calculated by EtBr exclusion, was used to determine the energy transfer efficiency, as an indirect measurement of the lipoplexes structural and physicochemical properties. Our results demonstrate that the inclusion of monoolein in the cationic liposomes formulation significantly modifies the rate of DNA complexation, being DODAB:MO (1:1) the system with higher DNA condensation efficiency. DOI: 10.1007/s10895-007-0299-5 PMID: 18157688 [Indexed for MEDLINE]