<Home — Psychoactive Plant Database



  Psychoactive Plant Database - Neuroactive Phytochemical Collection





Worldwide, there are plants known as psychoactive plants that naturally contain psychedelic active components. They have a high concentration of neuroprotective substances that can interact with the nervous system to produce psychedelic effects. Despite these plants' hazardous potential, recreational use of them is on the rise because of their psychoactive properties. Early neuroscience studies relied heavily on psychoactive plants and plant natural products (NPs), and both recreational and hazardous NPs have contributed significantly to the understanding of almost all neurotransmitter systems. Worldwide, there are many plants that contain psychoactive properties, and people have been using them for ages. Psychoactive plant compounds may significantly alter how people perceive the world.

 

 

1. Yao Xue Xue Bao. 2016 Nov;51(11):1745-50. [Flavonoids from leaves of Psidum littorale]. [Article in Chinese] Cui HQ, Peng CY, Huang YZ, Gao Y, Liu JQ, Zhang R, Shu JC. We investigated the chemical constituents of the leaves of Psidum littorale, which include 16 flavonoids, including seven flavonols, six flavonoid glycosides and three flavonones. The compounds were isolated by silica gel column chromatography. Their structures were elucidated on the basis of spectral analysis and by comparison with published data. Seven flavonols were kaempferol (1), isorhamnetin (2), myricetin- 3,7,3’-trimethyl ether(3), laricitrin (4), quercetin (5), myricetin (6) and quercein-3,4’-dimethyl ether (7), six flavonoid glycosides were guaijaverin (8), hyperoside (9), 5,4’-dyhydroxy-3,7,5’-methoxyflavone-3’-O-β-D- glucoside (10), laricitrin-3-O-xyloside (11), myricetin-3-O-α-L-rhamnopyranoside (12) and myricetin-3-O-β-D- xyloside (13). Three flavonones were 4’-O-methyldihydroquercetin (14), dihydroapigenin (15) and ampelopsin 4’-O-β-D-glucopyranoside (16). Compound 10 is a new chemical, compounds 2-4, 7, 10-16 were first isolated from this plant. (1)H NMR and (13)C NMR data of compound 11 were not reported in literature. PMID: 29908132 [Indexed for MEDLINE] 2. J Food Sci. 2016 Jun;81(6):C1385-93. doi: 10.1111/1750-3841.13329. Epub 2016 May 13. Change in Flavonoid Composition and Antioxidative Activity during Fermentation of Onion (Allium cepa L.) by Leuconostoc mesenteroides with Different Salt Concentrations. Lee YG(1), Cho JY(1), Kim YM(1), Moon JH(1). Author information: (1)Authors are with Dept. of Food Science and Technology, Functional Food Research Center, and BK21 Plus Program, Chonnam National Univ, 77 Yongbongro, Gwangju, 61186, South Korea. The aim of this study is to investigate the change in flavonoid composition and antioxidative activity during fermentation of onion (Allium cepa L.) by Leuconostoc mesenteroides with different NaCl concentrations. In order to qualify and quantify the flavonoids during fermentation of onion, 7 flavonoids, [quercetin 3,7-O-β-d-diglucopyranoside (Q3,7G), quercetin 3,4'-O-β-d-diglucopyranoside (Q3,4'G), quercetin 3-O-β-d-glucopyranoside (Q3G), quercetin 4'-O-β-d-glucopyranoside (Q4'G), isorhamnetin 3-O-β-d-glucopyranoside (IR3G), quercetin (Q), and isorhamnetin (IR)], were isolated and identified from onion. During fermentation, the contents of flavonoid glucosides (Q3,7G, Q3,4'G, Q3G, Q4'G, and IR3G) gradually decreased, whereas the contents of flavonoid aglycones (Q, IR) gradually increased. Decline rates of the flavonoid glucosides increased with the addition of L. mesenteroides. Furthermore, the activity of β-glucosidase, which is produced by L. mesenteroides, is dose-dependently inhibited with different NaCl concentrations during fermentation. The presence of L. mesenteroides enhanced the antioxidative activity of onion as demonstrated using the 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and reducing power assays. The enhancement of antioxidative activity was considered because the content of flavonoid aglycones increased during fermentation. However, the addition of NaCl may decrease the antioxidative activity; we surmise that this phenomenon occurs because of the inhibition of β-glucosidase by NaCl. Therefore, we conclude that the addition of NaCl may be useful for the regulation of antioxidative activity via the control of β-glucosidase action, during the fermentation of flavonoid glucoside-rich foods. © 2016 Institute of Food Technologists® DOI: 10.1111/1750-3841.13329 PMID: 27175820 [Indexed for MEDLINE]