Worldwide, there are plants known as psychoactive plants that naturally contain psychedelic active components. They have a high concentration of neuroprotective substances that can interact with the nervous system to produce psychedelic effects. Despite these plants' hazardous potential, recreational use of them is on the rise because of their psychoactive properties. Early neuroscience studies relied heavily on psychoactive plants and plant natural products (NPs), and both recreational and hazardous NPs have contributed significantly to the understanding of almost all neurotransmitter systems. Worldwide, there are many plants that contain psychoactive properties, and people have been using them for ages. Psychoactive plant compounds may significantly alter how people perceive the world.
1. Metabolites. 2021 Sep 17;11(9):629. doi: 10.3390/metabo11090629. Bioassay-Guided Isolation of Broad-Spectrum Fungicidal Active Compound from Artemisia ordosica. Tang G(1)(2), Yang S(1), Hu W(1), Jiang J(1), Yan H(1)(2), Feng J(1)(2), Zhang C(3), Wang Y(1)(2). Author information: (1)College of Plant Protection, Northwest A&F University, Yangling 712100, China. (2)Shaanxi Research Center of Biopesticide Engineer & Technology, Northwest A&F University, Yangling 712100, China. (3)College of Agronomy, Northwest A&F University, Yangling 712100, China. To avoid the widespread resistance of commercial fungicides, new broad-spectrum botanical fungicides need to be developed. In previous bioactive screening assays, extracts of Artemisia ordosica Krasch. (A. ordosica) had highly antifungal activities, but the responsible phytochemicals were unidentified. In this study, active compounds of A. ordosica extracts were identified using a bioassay-guided method, and antifungal assays were performed in vitro and in vivo. The bioactive compounds were dissolved in petroleum ether, and the best antifungal fraction contained four compounds: trans-dehydromatricaria ester (TDDE), 7, 4-demetylnringenin, capillarin, and stearic acid. Among them, TDDE exhibited the highest antifungal activity against six pathogenic fungi and five bacteria. It exhibited significant fungicidal activity against Thanatephorus cucumeris and Botrytis cinerea with EC50 values of 0.464 μg/mL and 1.4 μg/mL, respectively. The living tissue bioassay results showed that the relative protection effects (RPE) of TDDE on tomato leaves, tomato fruit, and strawberry leaves infected with B. cinerea reached 76.78%, 86.2%, and 80.89%, respectively. In pot experiments, the RPE on tomato and strawberry plants infected with B. cinerea reached 84.11% and 96.37%, respectively. Morphological and physiological examination showed that TDDE had significant inhibitory effects on mycelial growth, including increased top offshoot, contorted hyphal tips, and extravasated cytochylema. Meanwhile, bactericidal activities of TDDE were significantly higher than kanamycin and streptomycin in five bacteria, and the plant tissue experiments further demonstrated that it had an 88.31% RPE on walnut leaves infected with Xanthomonas campestris pv. jugiandis, 72.18% RPE on potato infected with Erwinia carotovora subsp. carotovora, and 82.50% RPE on kiwifruit branches infected with Pseudomonas syringae pv. actinidiae. The active compounds isolated from A. ordosica in this study show great potential value for developing broad-spectrum fungicides, and also provide an important way to identify and isolate new bioactive products from medicinal plants. DOI: 10.3390/metabo11090629 PMCID: PMC8468595 PMID: 34564445 Conflict of interest statement: The authors declare no conflict of interest.